Kardiorespirator tadqiqotlar jurnali 2022, №3
Тема статьи
КЛИНИЧЕСКИЕ ПРОЯВЛЕНИЯ, ИММУНОПАТОГЕНЕЗ ДИФФУЗНОГО ТОКСИЧЕСКОГО ЗОБА (13-18)
Авторы
Кодиров А.Э., Зиядуллаев Ш.Х., Ким А.А., Ташкенбаева Э.Н., Камалов З.С., Олимжонова Ф.Ж.
Учреждение
Самаркандский государственный медицинский университет, Институт иммунологии и геномики человека АН РУз
Аннотация
Настоящий обзор литературы посвящен актуальной проблеме в области эндикринологии, как ДТЗ. Показаны основные клинические проявления ДТЗ связаные с избытком гормонов щитовидной железы, влияющие одновременно на несколько различных систем организма. Описана роль иммунологических механизмов, интерлейкинов в формировании заболевания. Поражение сердечно-сосудистой системы — частое и серьезное осложнение диффузного токсического зоба (ДТЗ), нередко выступающее в клинической картине на первый план и определяющее течение и исход заболевания. Для обозначения этого поражения R. Kraus в 1899 г. ввел термин “тиреотоксическое сердце”, и в настоящее время под ним понимается симптомокомплекс нарушений деятельности сердечно-сосудистой системы, вызванных токсическим действием избытка тиреоидных гормонов (ТЕ) и характеризующихся развитием гиперфункции, гипертрофии, дистрофии, кардиосклероза и сердечной недостаточности (СН).
Ключевые слова
Диффузный токсический зоб, клинические проявления, иммунопатогенез
Литературы
Akamizu T, Satoh T, Isozaki O, et al. Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys. Thyroid 2012;22:661-79 2. Antonelli A, Saracino A, Alberti B, et al. High-dose intravenous immunoglobulin treatment in Graves' ophthalmopathy. Acta Endocrinol 1992;126:13-23. 3. Antonelli A, Ferrari SM, Frascerra S, et al. Circulating chemokine (CXC motif) ligand (CXCL)9 is increased in aggressive chronic autoimmune thyroiditis, in association with CXCL10. Cytokine 2011;55:288-93. 4. Antonelli A, Ferrari SM, Corrado A, et al. Autoimmune thyroid disorders. Autoimmun Rev 2015;14:174-80 5. Abbas AK, Murphy KM, Sher A. Functional diversity of T lymphocytes. Nature. 1996;383:787–793 6. Boelaert K, Torlinska B, Holder RL, et al. Older subjects with hyperthyroidism present with a paucity of symptoms and signs: a large crosssectional study. J Clin Endocrinol Metabol 2010; 95:2715-26. 7. Brent GA. Clinical practice. Graves' disease. N Engl J Med 2008;358:2594-605 8. Burch HB, Cooper DS. Management of Graves’ disease: a review. JAMA, J Am Med Assoc 2015;314:2544e54. 9. Chang CC, Cheng CJ, Sung CC, et al. A 10-year analysis of thyrotoxic periodic paralysis in 135 patients: focus on symptomatology and precipitants. Eur J Endocrinol 2013;169:529-36 10. Dickinson AJ, Perros P. Controversies in the clinical evaluation of active thyroid-associated orbitopathy: use of a detailed protocol with comparative photographs for objective assessment. Clin Endocrinol 2001;55:283-303.; 11. Davies TF, Burch HB. Clinical features and diagnosis of Graves' orbitopathy (ophthalmopathy). 2019. 12. Diana T, Olivo PD, Kahaly GJ. Thyrotropin receptor blocking antibodies. Horm Metab Res 2018;50:853-62 13. Diana T, Krause J, Olivo PD, et al. Prevalence and clinical relevance of thyroid stimulating hormone receptor-blocking antibodies in autoimmune thyroid disease. Clin Exp Immunol 2017;189:304-9. 14. Dardalhon V, Korn T, Kuchroo VK, Anderson AC. Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun. 2008;31:252–256. 15. Davies TF, Martin A, Concepcion ES, et al. Evidence of limited variability of antigen receptors on intrathyroidal T cells in autoimmune thyroid disease. N Engl J Med. 1991;325:238–244. 16. Ferrari SM, Ruffilli I, Elia G, et al. Chemokines in hyperthyroidism. J Clin Transl Endocrinol 2019; 16:100196. 17. Ferrari SM, Fallahi P, Ruffilli I, et al. The association of other autoimmune diseases in patients with Graves' disease (with or without ophthalmopathy): review of the literature and report of a large series. Autoimmun Rev 2019;18:287-92. 18. Fallahi P, Ferrari SM, Ragusa F, et al. Th1 chemokines in autoimmune endocrine disorders. J Clin Endocrinol Metabol 2019. pii: dgz289. [Epub ahead of print]. 19. Fisfalen ME, Palmer EM, Van Seventer GA, et al. Thyrotropinreceptor and thyroid peroxidase–specific T cell clones and their cytokine profile in autoimmune thyroid disease. J Clin Endocrinol Metab. 1997;82:3655–3663 20. Fisfalen ME, Palmer EM, Van Seventer GA, et al. Thyrotropinreceptor and thyroid peroxidase–specific T cell clones and their cytokine profile in autoimmune thyroid disease. J Clin Endocrinol Metab. 1997;82:3655–3663. 161. 21. Huppa JB, Davis MM. The interdisciplinary science of T-cell recognition. Adv Immunol. 2013;119:1–50. 22. Hirai N, Watanabe M, Inoue N, et al. Association of IL6 gene methylation in peripheral blood cells with the development and prognosis of autoimmune thyroid diseases. Autoimmunity 2019;52:251-5. 23. Imani D, Rezaei R, Razi B, et al. Association between IL6-174 G/C polymorphism and graves' disease: a systematic review and metaanalysis. Acta Med Iran 2017;55:665-71. 24. Kotwal A, Stan M. Thyrotropin receptor antibodies-an overview. Ophthalmic Plast Reconstr Surg 2018;34:S20e7. 25. Kahaly GJ, Diana T, Kanitz M, et al. Prospective trial of functional thyrotropin receptor antibodies in graves' disease. J Clin Endocrinol Metabol 2019. pii: dgz292. [Epub ahead of print]. 26. Kronenberg M, Rudensky A. Regulation of immunity by selfreactive T cells. Nature. 2005;435:598–604. 158. 27. Li Y,Wang Z, Yu T, et al. Increased expression of IL-37 in patients with Graves' disease and its contribution to suppression of proinflammatory cytokines production in peripheral blood mononuclear cells. PloS One 2014;9:107183. 28. McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev 2014; 35:59- 105 29. Menconi F, Marcocci C, Marin_o M. Diagnosis and classification of Graves' disease. Autoimmun Rev 2014;13:398-402 30. MacFarland SP, Bauer AJ, Adzick NS, et al. Disease burden and outcome in children and young adults with concurrent Graves disease and differentiated thyroid carcinoma. J Clin Endocrinol Metabol 2018;103:2918-25 31. Morshed SA, Latif R, Davies TF. Delineating the autoimmune mechanisms in Graves’ disease. Immunol Res. 2012;54: 191–203. 32. Martin A, Davies TF. T cells and human autoimmune thyroid disease: Emerging data show lack of need to invoke suppressor T-cell problems. Thyroid. 1992;2:247–261 33. Mao C, Wang S, Xiao Y, et al. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J Immunol. 2011;186:4734–4743. McIntosh RS, Watson PF, Pickerill AP, et al. No restriction of intrathyroidal T cell receptor V alpha families in the thyroid of Graves’ disease. Clin Exp Immunol. 1993;91:147–152. 35. Nakashima M, Kong YM, Davies TF. The role of T cells expressing TcR V beta 13 in autoimmune thyroiditis induced by transfer of mouse thyroglobulin-activated lymphocytes: Identification of two common CDR3 motifs. Clin Immunol Immunopathol. 1996; 80:204–210. 36. Perricone C, Versini M, Ben-Ami D, et al. Smoke and autoimmunity: the fire behind the disease. Autoimmun Rev 2016;15: 354e74. 37. Pan D, Shin YH, Gopalakrishnan G, Hennessey J, De Groot LJ. Regulatory T cells in Graves’ disease. Clin Endocrinol (Oxf). 2009; 71:587– 593. 38. Qi Y, Li X, Zhang Q, et al. Increased chemokine (C-C motif) ligand 21 expression and its correlation with osteopontin in Graves' disease. Endocrine 2015;50:123-9. 39. Romagnani S. The Th1/Th2 paradigm and allergic disorders. Allergy 1998;53:12-5. 40. Rapoport B, McLachlan SM. Graves' hyperthyroidism is antibody-mediated but is predominantly a Th1-type cytokine disease. J Clin Endocrinol Metabol 2014;99:4060-1. 41. Rapoport B, McLachlan SM. Reflections on thyroid autoimmunity: a personal overview from the past into the future.Horm Metab Res 2018;50:840-52. 42. Romagnani S. Regulation of the T cell response. Clin Exp Allergy. 2006;11:1357–1366. 43. Selmer C, Olesen JB, Hansen ML, et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. BMJ: Br Med J/Br Med Assoc 2012;345:7895.6. 44. Smith TJ, Hegedüs L. Graves' disease. N Engl J Med 2016;375:1552-65. 45. Spinelli C, Bertocchini A, Antonelli A, et al. Surgical therapy of the thyroid papillary carcinoma in children: experience with 56 patients < or ¼16 years old. J Pediatr Surg 2004;39:1500-5. 46. Smith TJ. Is IGF-I receptor a target for autoantibody generation in Graves’ disease? J Clin Endocrinol Metab. 2013;98:515–518. 47. Tandon N, Freeman MA, Weetman AP. T cell response to synthetic TSH receptor peptides in Graves’ disease. Clin Exp Immunol. 1992;89:468–473. 48. Tu Y, Fan G, Zeng T, et al. Association of TNF-a promoter polymorphism and Graves' disease: an updated systematic review and metaanalysis. Biosci Rep 2018;38. 49. Vaidya B, Pearce SH. Diagnosis and management of thyrotoxicosis. BMJ: Br Med J/Br Med Assoc 2014;349:g5128. 50. Wemeau JL, Klein M, Sadoul JL, et al. Graves' disease: introduction, epidemiology, endogenous and environmental pathogenic factors. Ann Endocrinol 2018;79:599-607. 51. Watson PF, Pickerill AP, Davies R, Weetman AP. Analysis of cytokine gene expression in Graves’ disease and multinodular goiter. J Clin Endocrinol Metab. 1994;79:355–360.