Biomeditsina va amaliyot jurnali, 2023 №1
Тема статьи
STUDY OF CHANGES IN THE MICROBIOLOGICAL LANSCAPE OF THE COLON UNDER THE INFLUENCE OF A GENE-MODIFIED PRODUCTS (66-73)
Авторы
Karimova A. Maqsuda, Ibrahimova R. Нamida, Asatova B. Nafisa
Учреждение
Urgench Branch of Tashkent Medical Academy
Аннотация
Objective: The study of the effect of GM-soi on the normal microflora of the colon in experimental animals. Methods: To achieve the set goal do this, 90 toothless male feathers were involved in the study, which were divided into 3 groups: group 1 - intact white toothless feathers (n = 30) in the standard vivarium diet, not containing soybeans without GM or GM; Group 2 - white rats (n = 30) comprising soy without GM in the standard vivarium diet; Group 3 - white rats (n = 30) coated with GM soy in the standard vivarium diet. Bacteriological researches of intestinal mass of proteinaceous invertebrates were conducted. To determine the effect of GM soybeans, bacteriological studies of the colon of white outbred rats were carried out. The study studied 9 microorganisms from among the representatives of the colon microflora. Results: Analysis of the obtained results showed that the symptoms of colon dysbacteriosis were observed at the end of the observation period in laboratory animals that consumed GM soybeans. This situation is manifested in the following: the index of Bifidobacterium spp and Lactobacillus spp was significantly reduced by 2.43 and 3.05 times in animals that consumed GM soy compared to intact rats, which was interpreted as the first element of dysbiosis formed under the influence of GM soy. It has been proven that the germination of lactose-negative strains, the absence of lactose-positive strains is the second element of colon dysbiosis. In the main group, Enterobacter spp and Proteus spp increased by 4.54 and 3.75 times, respectively, compared with the control group, which turned out to be the third element of colon dysbiosis. if the representative of the indigenous microflora - nonpathogenic Streptococcus spp in the main group significantly decreased up to 1.47 times compared with intact laboratory animals, then the quantitative indicator of Staphylococcus spp significantly increased up to 1.50 times. This intergroup discrepancy has been interpreted as the fourth element of colonic dysbiosis. A significant increase in the quantitative index of Candida spp up to 1.94 times in №1 | 2023 67 outbred rats fed with GM soy, compared with those not fed with this product, is indicated as the fifth element of colon dysbiosis. GM soybeans have been shown to be the main factor causing this. Conclusions: In 2 out of 9 studied microorganisms (Staphylococcus spp, Candida spp), intergroup differences were not revealed, they were quantitatively close to each other. If all 5 of the listed elements of dysbiosis were present in laboratory animals that consumed GM soybeans, then they clearly did not appear in white outbred rats that consumed non-GM soybeans. In intact laboratory animals (group 1) there are no signs of dysbiosis, in animals fed non-GM soy (group 2) signs of dysbiosis are poorly developed (I degree of dysbiosis), and in those fed with GM soy, signs of dysbiosis are clearly expressed (II degree of dysbiosis). This situation was explained by the unfamiliarity of GM soybean in the organism of rats, the low resistance of both studied strains of microorganisms to environmental factors.
Ключевые слова
Keywords: GMO soy, white outbred rats, normal microflora, dysbiosis.
Литературы
Алланазаров А.Х. Нуралиева Х.О. Ген-модификацияланган соянинг лаборатория ҳайвонлари иммун тизими кўрсаткичларига таъсирини қиёсий баҳолаш // Общество и инновации. - Ташкент, 2021. - №3. – С.413-422. 2. Лукашенко Т.М. Изменение веса тела крыс при потреблении сои // Материалы международной конференции «Сигнальные механизмы регуляции висцеральных функций». – Минск, 2007. – С.152. 3. Мухаммедов И.М. Клиник микробиология: шифокор-мутахассисларга лаборатор ташхис // Ўқув қўлланма. – Тошкент, 2016. -632б. 4. Нуралиев Н.А., Бектимиров А.М-Т., Алимова М.Т., Сувонов К.Ж. Правила и методы работы с лабораторными животными при экспериментальных микробиологических и иммунологических исследованиях // Методическое пособие. - Ташкент, 2016. - 33 с. 5. Собирова Д.Р., Нуралиев Н.А., Гинатуллина Е.Н. Результаты исследования мутагенной активности генно-модифицированного продукта в экспериментах на лабораторных животных // Безопасность здоровья человека. – Ярославль, 2017. - №1. - С.27-31. 6. Собирова Д.Р., Нуралиев Н.А., Носирова А.Р., Гинатуллина Е.Н. Изучение влияния генно-модифицированного продукта на репродукцию млекопитающих в экспериментах на лабораторных животных // Инфекция, иммунитет и фармакология. – Ташкент, 2017. - №2 – С.195-200. 7. Шеина Н.И. Оценка патогенных свойств генно-инженерно-модифицированных микроорганизмов как один из критериев их биобезопасности // Гигиена и санитария. - Москва, 2017. - №96(3). – С.284-286. 8. Avozmetov J.E. Influence of a Genetically Modified Organism on the rat’s hepatobiliary system // European journal of Molecular & Clinical Medicine. – 2020. - Volume 7, Issue 8. – P.1235- 1237. 9. Angers-Loustau A., Petrillo M., Bonfini L., Gatto F., Sabrina R., Patak A., Kreysa J. JRC GMOMatrix: a web application to support Genetically Modified Organisms detection strategies // BMC Bioinformatics. – 2014. - Vol. 15, N 1. – P.417. 10. Khasanova D.A. Effect of a genetically modified product on the morphological parameters of the rat’s spleen and thymus // European Journal of Molecular & Clinical Medicine. - Англия, 2020. - Vol. 7. - Issue 1.-Р. 3364-3370. 11. Nuraliyev N.A., Allanazarov A.Kh. Estimation and assessment of cytogenetic changes in bone marrow cells of laboratory animals received a gene-modified product // Annals of Romanian Society for Cell Biology. - 2021. - Vol. 25, Issue 1. - P.401-411.